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ABSTRACT. In this paper we first introduce fuzzy s-b-open set, the
class of which is strictly larger than that of fuzzy open, fuzzy semiopen,
fuzzy preopen, fuzzy a-open, fuzzy [-open set. Using this newly defined
fuzzy set here we introduce a weak form of fuzzy regularity, a strong form
of fuzzy compactness and fuzzy T»-space. Afterwards, we introduce three
different types of fuzzy continuous-like functions and establish the mutual
relationships of these newly defined functions with fuzzy continuity. Lastly
several applications of these functions are established here.
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1. INTRODUCTION

In [1], fuzzy topology was introduced. Afterwards many mathematicians have
engaged themselves to introduce different types of fuzzy-open like sets. In [2], fuzzy
semiopen set was introduced. Using fuzzy semiopen set as a basic tool, here we
introduce fuzzy s-b-open set. It is shown that the intersection of any two fuzzy
s-b-open set need not be so and hence the collection of all fuzzy s-b-open sets on a
non-empty set does not form a fuzzy topology.

Recently, new types of fuzzy sets, viz., fuzzy soft set and fuzzy octahedron set are
introduced and studied. A new branch in fuzzy system is developed using these
types of fuzzy sets. In this context we have to mention [3, 4, 5, 6, 7, 8].
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2. PRELIMINARIES

Throughout the paper, (X, 7) or simply by X we shall mean a fuzzy topological
space (fts, for short) in the sense of Chang [1]. In [9], Zadeh introduced fuzzy set
as follows : A fuzzy set A in an fts X is a mapping from a non-empty set X into
the closed interval I = [0,1], i.e., A € IX. The support of a fuzzy set A, denoted by
suppA, is defined by suppA = {x € X : A(z) # 0}. The fuzzy set with the singleton
support {z} C X and the value ¢ (0 < ¢t < 1) will be denoted by x;. Ox and 1x are
the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of
a fuzzy set A in X is denoted by 1x \ A and is defined by (1x \ A)(z) =1 — A(x)
for each x € X. For any two fuzzy sets A, B in X, A < B means A(z) < B(z) for
all z € X while AgB means A is quasi-coincident (q-coincident, for short) [10] with
B, i.e., there exists € X such that A(x) + B(x) > 1. The negation of these two
statements will be denoted by A £ B and A 4B respectively. For a fuzzy set A, clA
and intA stand for the fuzzy closure and the fuzzy interior of Ain X [1]. A € IX is
said to be fuzzy regular open [2] [resp., fuzzy semiopen [2], fuzzy preopen [11], fuzzy
a-open [12], fuzzy B-open [13]], if A = int(clA) [resp., A < cl(intA), A < int(clA),
A <int(cl(intA)), A < cl(int(clA)). The complement of fuzzy regular open [resp.,
fuzzy semiopen, fuzzy preopen, fuzzy a-open, fuzzy S-open] set is said to be fuzzy
reqular closed [resp., fuzzy semiclosed, fuzzy preclosed, fuzzy a-closed, fuzzy 3-closed]
set. The smallest fuzzy semiclosed [resp., fuzzy preclosed, fuzzy a-closed, fuzzy
B-closed] set containing a fuzzy set A in X is called the fuzzy semiclosure [resp.,
the fuzzy preclosure, the fuzzy a-closure, the fuzzy B-closure] of A, denoted by sclA
[resp., pclA, aclA, BclA]. Tt is obvious that A € IX is fuzzy semiclosed [resp., fuzzy
preclosed, fuzzy a-closed, fuzzy S-closed] if and only if A = sclA [resp., A = pclA,
A = aclA, A = BclA]. The collection of all fuzzy regular open [resp., fuzzy semiopen,
fuzzy preopen, fuzzy a-open, fuzzy [-open] sets in X is denoted by FRO(X) [rssp.,
FSO(X), FPO(X), FaO(X), FBO(X)] and the collection of all fuzzy regular closed
[resp., fuzzy semiclosed, fuzzy preclosed, fuzzy a-closed, fuzzy S-closed] sets in X is
denoted by FRC(X) [rssp., FSC(X), FPC(X), FaC(X), FBC(X)]. For a fuzzy
open set A in X, sclA = int(clA) [14].

3. Fuzzy s-b-OPEN SET : SOME PROPERTIES

In this section fuzzy s-b-open set is introduced and studied, the class of which is
strictly larger than that of fuzzy open, fuzzy semiopen, fuzzy preopen, fuzzy a-open,
fuzzy [-open sets. Some basic properties of fuzzy s-b-open sets are discussed here.
First we recall some definitions from [15] for ready references.

Definition 3.1 ([15]). Let (X, 7) be an fts and A € IX. A fuzzy point z,, in X is
said to be fuzzy 0-semicluster point of A, if clUqA for all U € FSO(X) with x,qU.
The union of all fuzzy #-semicluster points of A is called the fuzzy 0-semiclosure of
A and is denoted by #-sclA. Tt is clear that A(€ I¥) is fuzzy f-semiclosed if and
only if A = 6-sclA.

Definition 3.2 ([15]). Let (X, ) be an fts and A € IX. Then r-kernel of A, denoted

by r-KerA, is defined as follows :

r-KerA= A{U :U € FRO(X),A<U}.
2
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Let us now introduce the following concept.

Definition 3.3. A fuzzy set A in an fts (X, 7) is said to be fuzzy s-b-open, if
A < cl(sint(clA)). The complement of a fuzzy s-b-open set is said to be fuzzy s-b-
closed. The collection of all fuzzy s-b-open [resp., fuzzy s-b-closed] sets in an fts X
is denoted by FsbO(X) [resp., FsbC(X)].

Remark 3.4. Union of any two fuzzy s-b-open sets is also so. But the intersection
of any two fuzzy s-b-open sets may not be so, as it seen from the following example.

Example 3.5. Let X = {a,b}, 7 = {0x,1x, A}, where A(a) = 0.5, A(b) = 0.6.
Then (X, 7) is an fts. Consider two fuzzy sets B, C defined by B(a) = 0.6, B(b) =
0.4,C(a) = 0.4,C(b) = 0.7. Then clearly B,C € FsbO(X). Let D = B A C. Then
D(a) = D(b) = 0.4. Thus dl(sint(cID)) =0x 2 D. So D ¢ FsbO(X).

Hence we can conclude that the set of all fuzzy s-b-open sets in an fts X does not
form a fuzzy topology.

Remark 3.6. It is clear from definitions that fuzzy open set, fuzzy regular open
set, fuzzy semiopen set, fuzzy preopen set, fuzzy a-open set, fuzzy S-open set imply
fuzzy s-b-open set, but the reverse implications are not necessarily true follow from
the following example.

Example 3.7. Let X = {a,b}, 7 = {0x,1x, A} where A(a) = 0.5, A(b) = 0.4. Then
(X,7) is an fts. Here FSO(X) = {0x,1x,U} where A < U < 1x \ A. Consider
a fuzzy set B defined by B(a) = B(b) = 0.5. Clearly B ¢ 7, B ¢ FRO(X),
B ¢ FPO(X). But cl(sint(clB)) =1x \ A> B = B € FsbO(X).

Next consider the fuzzy set C' defined by C(a) = 0.5,C(b) = 0. Then clearly
C & FSO(X), but cl(sint(clC)) =1x \ A > C = C € FsbO(X).

Again int(cl(intC)) = 0x #? C = C ¢ FaO(X).

Theorem 3.8. Let (X,7) be an fts. Then the union of any collection of fuzzy
s-b-open sets in X is fuzzy s-b-open in X.

Proof. Let G = {G, : a € A} be any collection of fuzzy s-b-open sets in X. Then
for any a € A, Go < cl(sint(clGy)). Also, Go < \/ Ga. Then clGq < cl(\/ Ga)

aEA aEA
implies that G, < cd(sint(clG,)) < cl(sint(cl( \/ G,))) and this is true for all
acA
a € A. Thus \/ Go < cl(sint(cl(\/ G.))). So \/ G, is a fuzzy s-b-open in
acA a€eA acA
X. O

Let us now introduce a new type of closure-like operator.
Definition 3.9. Let (X,7) be an fts and A € IX. Then the fuzzy s-b-closure of A,
denoted by sbclA, is defined by
sbelA= N{U e I*: A< U,U € FsbC(X)}
and the fuzzy s-b-interior of A, denoted by sbintA, is defined by
sbintA =\{G:G < A,G € FsbO(X)}.
3
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Note 3.10. By Remark 3.4, we can conclude that for any fuzzy set A in an fts
X, sbclA is fuzzy s-b-closed and sbintA is fuzzy s-b-open. Again, if A € FsbC(X)
[resp.,A € FsbO(X)], then A = sbclA [resp.,A = sbintA].

Result 3.11. Let (X, 7) be an fts. Then the following statements are true:

(1) for any fuzzy point z; in X and any U € IX, x; € sbclU and so for any
V € FsbO(X) with xqV, VqU,

(2) for any two fuzzy sets U, V, where V € FsbO(X), if U 4V, then sbclU 4V .

Proof. (1) Let ¢ € sbclU and V' € FsbO(X) with x¢qV. Then z; ¢ 1x \'V €
FsbC(X). Thus U £ 1x \'V. So UgV.

(2) Suppose U 4V and assume that sbclUqgV. Then there exists € X such that
(sbelU)(xz) + V(z) > 1. Thus V(z) + ¢ > 1, where t = (sbclU)(x). So x; € sbelU,
where z:qV,V € FsbO(X). By (1), VqU, a contradiction. O

Result 3.12. Let (X,7) be an fts and A € IX. Then the following statements are
true:

(1) sbel(1x \ A) = 1x \ sbintA,

(2) 1x \ sbclA = sbintA(1x \ A).

Proof. (1) Let z; € sbel(1x \ A) and assume that x; & 1x \ sbintA. Then xyqsbintA.
Thus there exists U € FsbO(X) with U < A such that z:qU. Since x; € sbcl(1x\A),
by Result 3.11(1), Ug(1x \ A). So Ag(1x \ A), a contradiction. Hence we have

(3.1) sbel(lx \ A) < 1x \ sbintA.

Conversely, let x; € 1x \ sbintA. Then 1 — sbintA(z) > t. Thus z; gsbintA. So
we get

(3.2) x¢ qU, where U € FsbO(X) with U < A.

Let V € FsbC(X) with 1x \ A< V. Then 1x \V < A, where 1x \ V € FsbO(X).
By (3.2), ¢ g(1x\V) =2 €V = x4 € sbcl(1x \ A). Thus we have

(3.3) 1x \ sbintA < sbcl(1x \ A).

Combining (3.1) and (3.3), (1) holds.
(2) Writing 1x \ A for A in (1), we get the proof. O

Lemma 3.13 ([15]). Let (X, 7) be an fts and A € I’X. Then the following statements
hold:

(1) for any A € FRO(X), 0-sclA = A,

(2) for any A € FBO(X),clA = aclA,

(3) for any A € FSO(X), clA = pclA,

(4) for any A € T,sclA = 0-sclA.
4. Fuzzy s-b-r-CONTINUOUS, s-b-CONTINUOUS AND ALMOST s-b-CONTINUOUS

FUNCTIONS

In this section a new type of fuzzy continuous-like function is introduced which
is an independent concept of fuzzy continuity [1]. Also we characterize this newly
defined function in several ways. Next we introduce two more functions and finally
establish the mutual relationships of these functions among themselves.

Let us now introduce the following concept.
4
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Definition 4.1. Let (X,7) and (Y, 71) be two fts’s. Then f: X — Y is said to be
fuzzy s-b-r-continuous function, if f=*(A) € FsbC(X) for all A € FRO(Y).

Theorem 4.2. Let (X,7) and (Y,71) be two fts’s and f : X — Y be a function.
Then the following statements are equivalent:

(1) f is fuzzy s-b-r-continuous,

L(A) € FsbO(X) for all A € FRO(Y),
f(sbel, U) < r-ker(f(U)) for allU € I,
sbel, (f~1(A)) < f~Y(r-ker(A)) for all A€ IV,
sbel (f~H(R)) < f~1(0-scl,R)) for all R € 1y,
sbel (f~H(R)) < f~Y(scl R)) for all R € 1y,
sbel, (f~1(R)) < f~Y(int,,(cl,R)) for all R € 71,
~L(int,, (cl;, A)) € FsbC(X) for all A € 1y,
f=(cl,, (int,, F)) € FsbO(X) for all F € 7¥,
el U) € FsbO(X) for allU € FRO(Y),
el U) € FsbO(X) for allU € FSO(Y),
Yint,, (cl;,U)) € FsbC(X) for allU € FPO(Y),
Yacel,U) € FsbO(X) for allU € FRO(Y),
1
(

(2) f
(3)
(4)
(5)
(6)
(7)
(8) f
9) f
(10
(11
(12
(13
(14 pcl, U) € FsbO(X) for allU € FSO(Y).

) [T
) [T
) [T
) [T
) [~

Proof. (1)< (2) Obvious.

(2)= (3) Suppose (2) holds and let U € I* and suppose that y; be a fuzzy point
in Y with y; & r-ker(f(U)). Then there exists V€ FRO(Y) such that f(U) <V
and y ¢ V = V(y) <t. Thus y,q(1y \ V) € FRC(Y) and 1y \ f(U) > 1y \ V. So
fU) A1y \ V) implies that U 4f'(1y \ V). By (2), /' (Iy \V) = 1x\ f7}(V) €
FsbO(X). By Result 3.11(2), sbel,U fg(1x \ f~1(V)). Then sbcl,U < f=1(V).
Thus f(sbcl,U) <V implies that 1y \ f(sbcl,U) > 1y \ V. So 1 — f(sbcl.U)(y) >
1—-V(y) > 11—t Hencet > f(sbcl;U)(y). Then y & f(sbcl.U). Therefore
f(sbel U) < r-ker(f(U)).

(3) = (4) Suppose (3) holds and let A € IY. Then f~1(A4) € I*X. By (3),
f(sbel, f~H(A)) < rker(f(f~1(A))) < r-ker(A). Thus sbel,(f~1(A)) < f~1(r-

ker(A)).

( ) = (1) Suppose (4) holds and let A € FRO(Y). By (4), sbel.(f~1(4)) <

L(r- ker( ) = f71(A). But f~1(A) < sbel, (f~1(A)) and thus f~1(A) = sbel, (f~!
So 1A e Fst’( ). Hence f is fuzzy s-b-r-continuous function.

(5) & (4) The proof follows from Lemma 3.13(4).

(6) < (7) Obvious.

(7) = (1) Suppose (7) holds and let A € FRO(Y). By (7), sbel,(f~1(A)) <
ft(nt,, (cl, A)) = f~Y(A). Thus f1(A) € FsbC(X). So f is fuzzy s-b-r-

continuous function.

(1) = (7) Suppose (1) holds and let A € 71. Then int,, (cl,, A) € FRO(Y). By
(1), f=Y(int,, (cly, A)) € FsbC(X). Thus sbel, (f~(A)) < sbel,(f~ (int,, (cl, A))) =
fﬁl(intn (clr A)).

(1)= (8) Suppose (1) holds and let A € 1. Then int., (cl;, A) € FRO(Y). Thus
by (1),
(8
X

ft(inty, (cl;, A)) € FsbC(X).

) = (1) Suppose (8) holds and let A € FRO(Y). Then A € 1. Thus by (8),
A) = f~Y(int,, (cl;, A)) € FsbC(X).

)
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(2) = (9) Suppose (2) holds and let F' € 7. Then dl, int,, F' € FRC(Y). Thus
by (2), f~1(cl,, (int, F)) € FsbO(X).

(9) = (2) Suppose (9) holds and let F € FRC(Y). By (9), f~Y(F) = f~(cl,, (int,, F)) €
FsbO(X).

(2) = (10) Suppose (2) holds and let U € FSO(Y'). ThenU < cl,, (intr, (cl,U)) <
ey, U. Thus c, U < cr (clyy (intr, (cl, U))) = clyy (intr, (clU)) < cry (e, U) =
cl,U. So cl U = ey, (int,, (cl;,U)). Hence cl;,,U € FRC(Y). Therefore by (2),
[l U) € FsbO(X).

(10) = (9) Suppose (10) holds. Since FSO(Y) C FRO(Y), by (10), f~(cl,,U) €
FsbO(X) for all U € FSO(Y).

(11) = (12) Suppose (11) holds and let U € FPO(Y). Then U < int, (cl;,U).

We claim that int., (cl,,U) € FRO(Y). Indeed, int,, (cl,U) <int, (cl (int:, (cl;,U))) <
intr, (cl;, U) implies that int,, (cl., U) = int,, (clr, (int., (cl;,U))). Thus 1y \int,, (cl,,U) €
FRC(Y). So 1y \ int,, (cl;,U) € FSO(Y). By (11), f~Y(cl.,(1y \ int,, (cl,U))) €
FsbO(X). Hence 1x\ f~t(int,, (int,, (cl,U))) = 1x\f~L(int,, (cl,U)) € FsbO(X).
Therefore f~1(int,, (cl,,U)) € FsbC(X).

(12) = (1) Suppose (12) holds and let U € FRO(Y). Then U € FPO(Y).
Thus by (12), f~(int,, (cl,U)) € FsbC(X). So f~Y(U) = f~(int,, (cl,U)) €
FsbC(X). Hence (1) follows.

(10) < (13) The proof follows from Lemma 3.13(2).

(11) < (14) The proof follow from Lemma 3.13(3). O

Theorem 4.3. Let (X, 7) and (Y, 71) be two fts’s and f: X =Y be a function. Let
us consider the following statements:

(1) for each fuzzy point x; in X and each A € FSO(Y') with f(x.)qA, there exists
U € FsbO(X) with x:qU and f(U) < ¢l A,

(2) f(sbel, P) < 0-scl., (f(P)) for all P € I*X,

(3) for each fuzzy point x; in X and each A € FSO(Y) with f(x;) € A, there
exists U € FsbO(X) such that x; € U and f(U) < cl A,

(4) f~Y(A) < sbint, (f~(cl,, A)) for all A€ FSO(Y),

(5) sbel, (f~H(R)) < f~Y(#-scl, R)) for all R € IY,

(6) f is fuzzy s-b-r-continuous function. Then (1), (2), (3), (4) and (5) are
equivalent, and (5) implies (6).

Proof. (1) = (2) Suppose (1) holds and let P € I* and z; be any fuzzy point in
X such that z; € sbel, P and G € FSO(Y) with f(z:)gG. By (1), there exists
U € FsbO(X) with z:qU, f(U) < cl;,G. As x; € sbcl, P, by Result 3.11(1), UgP.
Then f(U)qf(P). Thus f(P)qcl;,G. So f(z:) € 0-scl, (f(P)). Hence f(sbcl,P) <
0-scl, (f(P)).

(2) = (5) Suppose (2) holds and let R € IY. Then f~'(R) € I*. Thus by
(2), f(sbel(f7H(R))) < O-scly, (f(f71(R))) < b-sclr, R. So sbel, (f71(R)) < f7(6-
scly R).

(5) = (1) Suppose (5) holds and let x; be any fuzzy point in X and A € FSO(Y)
with f(z)gA. Since clr, A 4 (1y \ ¢l A), by definition, f(z:) € 0-scl-, (1y \ cl-, A).
Then x; € f~(0-scl,, (1y \ cl,, A)). By (5), x4 & sbel, (f~(1y \ ¢l A)). Thus there
exists U € FsbO(X) such that z,qU, U 4f 1(1y \ cl, A). So f(U) 4(1y \ clr, A).
Hence f(U) < ¢l A.

6
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(1) = (4) Suppose (1) holds and let A € F'SO(Y) and z; be any fuzzy point in
X such that x.qf~*(A). Then f(z¢)gA. Thus by (1), there exists U € FsbO(X)
such that z4qU, f(U) < clny A = xqU < f~Y(cl A). So xqU = sbint, U <
sbint, (f~1(cl;, A)). Hence xiqsbint.(f~*(cl;, A)) since sbint.(f~1(cl;, A)) is the
union of all fuzzy s-b-open sets in X contained in f~!(cl,, A). Therefore f=1(A4) <
sbint, (f~1(cl,, A)).

(4) = (1) Suppose (4) holds and let x; be any fuzzy point in X and A € FSO(Y)
with f(z¢)gA. Then by (4), z;qf~(A) < sbint,(f~1(cl;, A)). Thus there exists
U € FsbO(X) with x,qU, U < f=(cl,, A). So f(U) < cl,, A.

(3) = (4) Suppose (3) holds and let A € FSO(Y) and z; be any fuzzy point in
X such that z; € f~1(A). Then f(z;) € A. By (3), there exists U € FsbO(X)
with z; € U and f(U) < ¢l;,; A. Thus U < f~Y(cl,,A). So 2; € U = sbint, U <
sbint, (f~1(cl,, A)). Hence f~1(A) < sbint,(f~*(cl,, A)).

(4) = (3) Suppose (4) holds and let x; be any fuzzy point in X and A € FSO(Y)
with f(z;) € A. Then by (4), x; € f~1(A) < sbint,(f~*(cl,, A)). Thus there exists
U € FsbO(X) with 2, € U and U < f~Y(cl, A). So f(U) < cl,, A.

(5) = (6) Suppose (5) holds and let A € FRO(Y'). Then by (5), sbel.(f~1(A)) <
f71(0-scl,, A) = f~1(A). Thus by Lemma 3.13(1), f~*(A4) € FsbC(X). So f is
fuzzy s-b-r-continuous function. O

Theorem 4.4. Let (X, 7) and (Y, 71) be two fts’s and f : X — Y be a function satis-
fying sbel(f~H(R)) < f~1(0-scl,, R) for all R € IY. Then the following statements
hold:

(1) sbel-(f~H(R)) < f~1(0-scl, R) for all R € FSO(Y),

(2) sbel-(f~HR)) < f~1(0-scl, R) for all R € FPO(Y),

(3) sbel, (f~H(R)) < f~1(0-scl,, R), for all R € FBO(Y).

Proof. Obvious. O

Definition 4.5. Let (X, 7) and (Y, 71) be two fts’s and f : X — Y be a function.
Then f is said to be:

(i) fuzzy s-b-continuous, if f~1(A) € FsbO(X) for all A € 74,

(ii) fuzzy almost s-b-continuous, if f~1(A) € FsbO(X) for all A € FRO(Y).

Let us now recall the following definition from [1] for ready references.

Definition 4.6 ([1]). Let (X,7) and (Y, 71) be two fts’s and f : X — Y be a
function. Then f is said to be fuzzy continuous function, if f=*(U) € 7 for all
Uemn.

Remark 4.7. It is clear from definitions that

(1) fuzzy continuity = fuzzy s-b-continuity = fuzzy almost s-b-continuity, but
reverse implications are not necessarily true, in general, follow from the next exam-
ples,

(2) fuzzy s-b-r-continuity is an independent concept of fuzzy continuity, fuzzy
s-b-continuity and fuzzy almost s-b-continuity, follow from the next examples.

Example 4.8. Fuzzy continuity, fuzzy s-b-continuity and fuzzy almost s-b-continuity

% fuzzy s-b-r-continuity.

Let X = {a,b}, T = {Ox, 1)(, A, B}, To = {Ox, 1x,B}, where A(a) = A(b) =
7
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0.5, B(a) = 0.5, B(b) = 0.4. Then (X, 1) and (X, 72) are fts’s. Consider the identity
function ¢ : (X,71) — (X, 7). Clearly i is fuzzy continuous and thus fuzzy s-b-
continuous as well as fuzzy almost s-b-continuous function. Now B € FRO(X, 13).
i~1(B) = B. Then int,, (scl, (int,, (B))) = A ? B= B € FsbC(X,m) = i is not
fuzzy s-b-r-continuous function.

Example 4.9. Fuzzy s-b-r-continuity, fuzzy almost s-b-continuity # fuzzy s-b-
continuity, fuzzy continuity.

Let X = {a,b}, 1 = {0x,1x,A,B}, 72 = {0x,1x,C}, where A(a) = A(b) = 0.4,
B(a) = B(b) = 0.5,C(a) = 0.5,C(b) = 0.6. Then (X, 1) and (X, 12) are fts’s. Con-
sider the identity function ¢ : (X, 7)) — (X, 72). Clearly ¢ is fuzzy s-b-r-continuous
and fuzzy almost s-b-continuous function, but not fuzzy continuous function. Now
C € 1, but i71(C) = C £ cl,, (sint,, (cl;,C)) = B = C ¢ FsO(X,71) = i is not
fuzzy s-b-continuous function.

Example 4.10. Fuzzy s-b-continuity % fuzzy continuity.

Let X = {a,b}, m = {0x,1x,A4}, = = {0x,1x,B}, where A(a) = A(b) =
0.5, B(a) = 0.5, B(b) = 0.4. Then (X, 1) and (X, 72) are fts’s. Consider the identity
function ¢ : (X, ) — (X, 72). Clearly 4 is not fuzzy continuous function. Now
B € 1, i Y(B) = B < cl,,(sint;, (cl,B)) = A = B € FsbO(X,n1) = i fuzzy
s-b-continuous function.

Example 4.11. Fuzzy s-b-r-continuity # fuzzy almost s-b-continuity.

Let X = {a,b}, m = {0x,1x,A}, = = {0x,1x, B}, where A(a) = 0.5, A(b) =
0.6, B(a) = 0.5, B(b) = 0.3. Then (X,7;) and (X, 72) are fts’s. Consider the iden-
tity function i : (X,7) — (X,72). Now B € FRO(X,7), i }(B) = B. Then
intr, (scly (int;,B)) = 0x < B = B € FsbC(X,m1) = i is fuzzy s-b-r-continuous
function. But cl,, (sint,, (cl,B)) = 0x ? B = B & FsbO(X, 1) = i is not fuzzy
almost s-b-continuous function.

Definition 4.12 ([16]). An fts (X, 7) is said to be fuzzy extremally disconnected, if
the closure of ever fuzzy open set in X is fuzzy open in X.

Theorem 4.13. Let (X, 7) and (Y,71) be two fts’s and f : X — Y be a function.
Let (Y, 71) be fuzzy extremally disconnected space. Then [ is fuzzy s-b-r-continuous
if and only if f is fuzzy almost s-b-continuous function.

Proof. Suppose that f is fuzzy s-b-r-continuous function and let U € FRO(Y).
Then U = intr, (cl,U). AsY is fuzzy extremally disconnected, ¢l U € 7. Thus
U = intr e, U = ;U = clyint,,U. So U € FRC(Y). By the hypothesis,
f~Y(U) € FsbO(X). Hence f is fuzzy almost s-b-continuous function.

Conversely, suppose f is fuzzy almost s-b-continuous function and let U € FRC(Y).
As Y is fuzzy extremally disconnected, U € FRO(Y). Then by the hypothesis,
f71(U) € FsbO(X). Thus f is fuzzy s-b-r-continuous function. O

Remark 4.14. Composition of two fuzzy s-b-r-continuous (resp., fuzzy s-b-continuous
and fuzzy almost s-b-continuous) functions need not be so, as it seen from the fol-
lowing examples.

Example 4.15. Let X = {a7b}7 1 = {Ox,lx,A,B}, Ty = {Ox,lx}7 T3 =
{0x,1x, B}, where A(a) = A(b) = 0.5,B(a) = 0.5,B(b) = 0.4. Then (X,n),
8
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(X, 72) and (X, 73) are fts’s. Consider two identity functions 4; : (X, 71) — (X, 72),
ig : (X,72) = (X, 73). Clearly 4; and iy are fuzzy s-b-r-continuous functions. Let
i3 =ig0i;. Now B € FRO(X,73), i3 ' (B) = B. Then int,, (scl,, (int,, (B))) = A #
B = B ¢ FsbC(X, 1) = i3 is not fuzzy s-b-r-continuous function.

Example 4.16. Let X = {a,b}, 1 = {0x,1x,A}, 2 = {0x,1x}, 3 ={0x,1x, B},
where A(a) = 0.5, A(b) = 0.6,B(a) = 0.5,B(b) = 0.3. Then (X,7), (X,72) and
(X, 73) are fts’s. Consider two identity functions 41 : (X, 7)) — (X, 72) and iz :
(X,72) = (X, 713). Clearly iy and iy are fuzzy s-b-continuous and hence fuzzy almost
s-b-continuous functions. Let i3 = i3 0i;. Bow B € 753 as well as B € FRO(X, 73).
iz'(B) = B. Now cl,, (sint,, (cl;,B)) = 0x # B = B ¢ FsbO(X,71) = i3 is not
fuzzy s-b-continuous and also fuzzy almost s-b-continuous functions.

5. FUzzZY s-b-REGULAR, $-b-COMPACT AND s-b-T5-SPACES

In this section new types of separation axioms and compactness are introduced
and studied. Then the mutual relationships of these spaces with the spaces defined
in [1, 17] are established.

Definition 5.1. An fts (X, 7) is called a fuzzy s-b-regular space, if for each fuzzy
point x; in X and each fuzzy s-b-closed set F' with x; € F, there exist a fuzzy open
set U and a fuzzy s-b-open set V in X such that x,qU, FF <V and U 4V.

Theorem 5.2. For an fts (X, 7), the following statements are equivalent:

(1) X is fuzzy s-b-regular,

(2) for each fuzzy point x¢ in X and each fuzzy s-b-open set U in X with x:qU,
there exists a fuzzy open set V in X such that x,qV < sbclV < U,

(3) for each fuzzy s-b-closed set F in X, N{clV : F<V,V € FsbO(X)}=F,

(4) for each fuzzy set G in X and each fuzzy s-b-open set U in X such that GqU,
there exists a fuzzy open set V in X such that GqV and sbclV < U.

Proof. (1)=(2) Suppose (1) holds and Let x; be a fuzzy point in X and U, a fuzzy
s-b-open set in X with 2,qU. Then x; &€ 1x\U € FsbC(X). Thus by (1), there exist
a fuzzy open set V and a fuzzy s-b-open set W in X such that x,¢V, 1x \U < W,
V AW. So x;qV < 1x\W < U. Hence x:qV < sbclV < sbel(1x\W) =1x\W < U.

(2)=(1) Suppose (2) holds and Let F be a fuzzy s-b-closed set in X and z; be a
fuzzy point in X with z; ¢ F. Then z,q(1x \ F) € FsbO(X). Thus by (2), there
exists a fuzzy open set V' in X such that z:qV < sbclV < 1x \ F. So U € FsbO(X)
and z,qV, F <U and U 4V, where U = 1x \ sbclV.

(2)=(3) Suppose (2) holds and let F' be fuzzy s-b-closed set in X. Then we have

F< N{cV:F<V,V e FsbO(X)}.

Conversely, let ; ¢ F € FsbC(X). Then F(x) < t. Thus zq(1x \ F), where
1x \ F € FsbO(X). By (2), there exists a fuzzy open set U in X such that z;qU <
sbelU <1x \F. Put V =1x \ sbclU. Then F <V and U 4V. Thus x; ¢ clV. So
we get

N{elV : F <V,V e FsbO(X)} < F.

Hence A\{clV : F <V,V € FsbO(X)} = F.
9
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(3)=(2) Suppose (3) holds and let V' be any fuzzy s-b-open set in X and x; any
fuzzy point in X with x;,qV. Then V(z)+¢ > 1. Thus z; € (1x \ V), where 1x\V €
FsbC(X). By (3), there exists G € FsbO(X) such that 1x \ V < G and z; ¢ clG.
So there exists a fuzzy open set U in X with x;qU, U 4G = U < 1x \G <V
= xqU < sbelU < sbcl(1x \G) =1x \G < V.

(3)=(4) Suppose (3) holds and let G be any fuzzy set in X and U any fuzzy
s-b-open set in X with GqU. Then there exists © € X such that G(z) + U(x) > 1.
Let G(x) = t. Then x:qU. Thus x; € 1x \ U, where 1x \ U € FsbC(X). By (3),
there exists W € FsbO(X) such that 1x \U < W and z; &€ clW = (clW)(z) <t =
2¢q(1x \clW). Let V = 1x\cdlW. Then V is fuzzy open set in X and V(z)+t > 1 =
V(z)+G(z) > 1= VqG and sbclV = sbcl(1x \dW) < sbel(1x\W) = 1x\W < U.

(4)=(2) Obvious. O

Note 5.3. It is clear from Theorem 5.2 that in a fuzzy s-b-regular space, every fuzzy
s-b-closed set is fuzzy closed and hence every fuzzy s-b-open set is fuzzy open. As
a result, in a fuzzy s-b-regular space, the collection of all fuzzy closed (resp., fuzzy
open) sets and fuzzy s-b-closed (resp., fuzzy s-b-open) sets coincide.

Definition 5.4. Let A be a fuzzy set in X. A collection U of fuzzy sets in X is
called a fuzzy cover of A, if sup{U(z) : U € U} = 1, for each = € suppA (See [18]).
In particular, if A = 1x, we get the definition of fuzzy cover of X (See [1]).

Definition 5.5. A fuzzy cover U of a fuzzy set A in X is said to have a finite
subcover Uy, if Uy is a finite subcollection of U such that |JUy > A, i.e., Uy is also a
fuzzy cover of A (See [18]). In particular, if A =1x, we get JUy = 1x (See [1]).

Definition 5.6. A fuzzy set A in an fts (X, 7) is said to be fuzzy compact (See [18]),
if every fuzzy covering U of A by fuzzy open sets in X has a finite subcovering Uy of
U. In particular, if A =1x, we get the definition of fuzzy compact space (See [1]).

Definition 5.7. An fts (X, 7) is said to be fuzzy s-closed [19] [resp., fuzzy nearly
compact [16]], if every fuzzy covering of X by fuzzy regular closed [resp., fuzzy regular
open]| sets of X contains a finite subcovering.

Let us now introduce the following concept.

Definition 5.8. A fuzzy set A in an fts (X, 7) is called fuzzy s-b-compact, if every
fuzzy covering of A by fuzzy s-b-open sets of X has a finite subcovering. In particular,
if A= 1x, we get the definition of fuzzy s-b-compact space.

Remark 5.9. It is clear from above discussion that fuzzy s-b-compact space is fuzzy
compact. But the converse is not necessarily true follows from the next example.

Example 5.10. Let X = {a}, 7 = {0x,1x}. The clearly (X, 7) is a fuzzy compact
space. Here every fuzzy set is fuzzy s-b-open set in X. Consider the fuzzy cover
U = {Un(a) : n € N} where Uy(a) = {;77 : n € N}. Then U is a fuzzy s-b-open
cover of X. But it does not have any subcovering of X. Thus X is not fuzzy
s-b-compact space.

Theorem 5.11. FEvery fuzzy s-b-closed set A in a fuzzy s-b-compact space X is fuzzy
s-b-compact.
10
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Proof. Let A be a fuzzy s-b-closed set in a fuzzy s-b-compact space X. Let U be a
fuzzy covering of A by fuzzy s-b-open sets in X. Then V =UJ(1x \ 4) is a fuzzy
s-b-open covering of X. By the hypothesis, there exists a finite subcollection Vy of
V which also covers X. If V contains 1x \ A, we omit it and get a finite subcovering

of A. Consequently, A is fuzzy s-b-compact. a
Let us now recall the following definition from [17] for ready references.
Definition 5.12. [17] Let (X, 7) be an fts. Then X is said to be a fuzzy Ta-space,

if for each pair of distinct fuzzy points x,, ys : when x # y, there exist fuzzy open
sets Uy, Ua, V1, V2 such that zo € Ui,ysqVi and Uy 4Vi and z.qUs, yg € Vo and
Us 4V ; when o =y, a < 8 (say), there exist fuzzy open sets U,V in X such that
2o € U,ysqV and U 4V.

Now we introduce the following concept.

Definition 5.13. Let (X, 7) be an fts. Then X is said to be a fuzzy s-b-Ts-space, if
for each pair of distinct fuzzy points z,, yg : when x # y, there exist fuzzy s-b-open
sets Uy, Us, V1, Vo such that zo € Ui,ysqVi and Uy 4V and x,qUs, yg € Vo and
Us V2 ; when © =y, o < 8 (say), there exist fuzzy s-b-open sets U,V in X such
that 2, € U,ysqV and U 4V.

Let us now recall the following definition from [17] for ready references.

Definition 5.14. [17] An fts (X, 7) is said to be a fuzzy reqular space, if for any
fuzzy point x; in X and any fuzzy closed set F in X with x; € F', there exist fuzzy
open sets U,V in X such that z,qU, F <V and U 4V.

Remark 5.15. It is clear from Note 5.3 that fuzzy s-b-regular space is fuzzy reg-
ular and fuzzy Ts-space is fuzzy s-b-Ts-space. But the reverse implications are not
necessarily true, follow from the next example.

Example 5.16. Consider Example 5.10. It is clear that (X, 7) is fuzzy regular and
fuzzy s-b-Th-space (as every fuzzy set is fuzzy s-b-open set as well as fuzzy s-b-closed
set). Now consider the fuzzy point ag4 and a fuzzy set A defined by A(a) = 0.3.
Then ag4 & A € FsbC(X). But there do not exist any fuzzy open set U and a fuzzy
s-b-open set V in X such that ag4qU, A <V and U 4V (because 1x is the only
fuzzy open set in X with ag4qlx and 1xqV for all fuzzy set V(# 0x) in X). Then
X is not fuzzy s-b-regular space. Consider two fuzzy points ag4 and ag 5 in X. But
there do not exist fuzzy open sets U,V in X such that ag4 € U,ag5¢9V and U 4V.
Thus X is not fuzzy Ts-space.

6. APPLICATIONS OF FUZZY S-b-R-CONTINUOUS, $-b-CONTINUOUS AND ALMOST
$-b-CONTINUOUS FUNCTIONS

In this section the applications of the functions introduced in this paper are
established.
First we recall the following definition from [20] for ready references.

Definition 6.1 ([20]). A function f: X — Y is said to be a fuzzy open function, if
f(U) is a fuzzy open set in Y for every fuzzy open set U in X.
11
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Theorem 6.2. Let (X, 7) and (Y,71) be two fts’s and f : X — Y surjective, fuzzy
s-b-r-continuous function. If X is fuzzy s-b-compact space, then'Y is fuzzy s-closed
space.

Proof. Let U = {U, : « € A} be a fuzzy covering of Y by fuzzy regular closed sets
of Y. As f is fuzzy s-b-r-continuous, V = {f~1(U,) : a € A} covers X by fuzzy
s-b-open sets of X. As X is fuzzy s-b-compact space, there exists a finite subset Ag
of A such that 1x = \/ f~Y(U,). Then we have

a€Ng
ly=fC\ 7 0) =V FGU) € \ Ua
a€lg a€lg a€lg
Thus Y is fuzzy s-closed space. O

Theorem 6.3. Let (X,7) and (Y,71) be two fts’s and f : X — Y fuzzy s-b-
continuous function. If A is fuzzy s-b-compact set relative to X, then the image
f(A) is fuzzy compact relative to Y.

Proof. Let A be fuzzy s-b-compact relative to X and U = {U,, : a € A} a fuzzy cov-

ering of f(A) by fuzzy open sets of Y, i.e, f(A) < \/ U,. Then A < f71( \/ Uy) =
a€cA aEN

\/ Y (U,). Thus V = {f~1(U,) : a € A} is a fuzzy covering of A by fuzzy s-b-

acEA
open sets in X. As A is fuzzy s-b-compact set relative to X, there exists a finite

subcollection Vo = {f~1(Uy,,) : 1 <i < n} of V such that A < \/f_l(Uai). So
i=1

n

FA) < FN 1 U) =\ F(F 7 (Uay)) <
=1

<=z

U,

i=1 i=1
Hence Uy = {U,, : 1 < i < n} is a finite subcovering of f(A). Therefore f(A) is
fuzzy compact relative to Y. O

Theorem 6.4. Let (X,7) and (Y,71) be two fts’s and f : X =Y fuzzy almost s-
b-continuous function. If A is fuzzy s-b-compact relative to X, then the image f(A)
18 fuzzy nearly compact relative to Y .

Proof. Let A be fuzzy s-b-compact relative to X and U = {U, : « € A} a fuzzy
covering of f(A) by fuzzy regular open sets of Y, i.e, f(A) < \/ Us. Then A <

a€cA
Y \/ Ua) = \/ Y U,). Thus V = {f~}(U,) : @« € A} is a fuzzy covering of A
aEA acA

by fuzzy s-b-open sets in X (since f is fuzzy almost s-b-continuous function). As
A is fuzzy s-b-compact set relative to X, there exists a finite subcollection Vy =

{f~Y(U,,) : 1 <i<n} of Vsuch that A < \/f’l(Ua ). So we have

i=1

FA) < FN 1 U)) = F(F 7 Ua,) <\ U,
, v ,
12
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Hence Uy = {U,, : 1 < i < n} is a finite subcovering of f(A). Therefore f(A) is
fuzzy nearly compact relative to Y. O

Theorem 6.5. Let (X, 7) and (Y, 1) be two fts’s and f : X — 'Y be injective, fuzzy
s-b-continuous function and Y is fuzzy To-space. Then X is fuzzy s-b-Ts-space.

Proof. Let x, and yg be two distinct fuzzy points in X, where z # y. As f is
injective, f(zo) # f(ys). As Y is a fuzzy Ta-space, there exist fuzzy open sets
Ui, Uz, Vi, Vo in Y such that f(zo) € U, f(ys)gVh and Uy 4V1 and f(zq)qUs,
f(ys) € Vo and Uz Ve, Then @ € [~1(U1), ypaf1(V) and f~L(U) 4f(VA).
Indeed, f~1(Uy)qf~1(V1) = there exists z € X such that f~1(U1)(2)+f~1(V1)(2) >
1= Ui (f(2)) + Vi(f(2)) > 1 = UiqV;. This is a contradiction. Also, we get

Tadf T (U2), ys € f71(Va) and [~ (Us) 4F71(Va),
where fﬁl(Ul)v fﬁl(vl), fﬁl(UQ)v fﬁl(‘/Z) € FSbO(Xv 7_1)'
Similarly, when z = y, a < f (say), there exist Uy, Us € 71 such that f(z,) €

Ui, f(ys)qUs and Uy 4Us. Then o € f~1(Ur),ypqf " (Uz) and f~H(U1) 4f " (U=)
where f=1(Uy), f~1(Uz) € FsbO(X, ). Hence X is fuzzy s-b-Ty-space. O

Theorem 6.6. If a bijective function h : X —'Y is fuzzy s-b-continuous, fuzzy open
function from a fuzzy s-b-regular space X onto an fts Y, then Y is fuzzy regular
space.

Proof. Let y; be a fuzzy point in Y and F, a fuzzy closed set in Y with y, & F.
As h is injective, there exists © € X such that h(x) = y. Then h(z;) € F. As h is
fuzzy s-b-continuous function, z; € h™1(F) € FsbC(X). As X is fuzzy s-b-regular
space, there exist a fuzzy open set U and a fuzzy s-b-open set V in X such that
2qU, h"1{(F) <V and U 4V. Since X is fuzzy s-b-regular, by Note 5.3, V is also
fuzzy open set in X. As h is fuzzy open function, we have h(zy)gh(U), F < h(V)
and h(U) 4h(V), where h(U), h(V') are fuzzy open sets in Y. Thus Y is fuzzy regular
space. O

7. CONCLUSIONS

By introducing a larger class of fuzzy open-like sets here we introduce a weaker
form of fuzzy regularity. But in this new type of fuzzy regular space, fuzzy open
set and this new type of fuzzy set coincide. Our next goal is to find interrelations
between these types of fuzzy open-like sets defined earlier.

Acknowledgements. I express my sincere gratitude to the reviewers for their
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